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Abstract. The winding number of a random walk in the plane is the net angle through 
which the walker encircles the origin. This paper discusses the moments and asymptotic 
form of the winding number distribution for walks of constant step size 1. We show that 
the root mean square winding number Or,,,, grows logarithmically with the number of steps 
N as N + CO, in contrast with the N ” *  growth of the radial distribution. The corresponding 
diffusion process, however, has infinite O , , , ,  and does not provide a good approximation 
for the random walk distribution. Instead, a diffusion process considered recently by 
Rudnick and Hu,  where the area surrounding the origin has been removed out to a radius 
R, provides the correct asymptotic distribution. We find that the optimum radius for 
convergence of the finite step and diffusion distributions is precisely R = e-2/. 

1. Introduction 

A particle starts out at the origin in the plane and takes random steps of constant size 
1. The first step defines the angle 8 = 0. How many times does the particle wind about 
the origin in its travels? This question was first raised by Levy (1940). The net angle 
0 traversed at step N will be called the winding number of the walk. Because we 
distinguish circling about the origin once from no circling, we do not identify 8 = 2 7 ~  
with 0 = 0; thus 8 E (-CO, a) (the walk can be pictured as taking place on a Riemann 
surface covering the plane). The winding number problem has attracted attention 
recently because of its applications to solar physics (Berger 1987), and polymer physics 
(Rudnick and Hu 1987). Magnetic field lines in the solar atmosphere can become 
entangled due to the random motions of their endpoints in the solar photosphere. The 
relative motion of any two endpoints will have a winding number; as this number 
increases, the two overlying field lines become more and more braided. Similarly, 
winding numbers can help describe the random entanglement of two polymer filaments. 

The radial development of a random walk can be closely approximated as a diffusion 
process (e.g. Chandrasekhar (1943) reprinted in Wax (1954)). Suppose a. functiun 
p d ( r ,  4, t )  (where 4 E (0,27r)) diffuses away from the origin according to 

apd/at  = DV’pd .  

(In this paper quantities related to a diffusion problem will have the subscript d; the 
corresponding random walk quantities will not be subscripted.) To relate the radial 
distribution h d (  r, t )  = jtT Pd d 4  to the radial distribution h( r, N )  for a walk with step 
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size I ,  one must relate t to N. To this end, one introduces a dimensionless time variable 
T = 4Dt/12. _With_the scaling T = N, the second moments of the radial distributions are 
equivalent ( r2 = r i  = NI’). Furthermore, the radial distributions converge for large N :  

This behaviour of the radial random walk suggests that the evolution of winding 
number may also be described by diffusion. Spitzer (1958) considered a diffusion 
problem in the plane with initial point ( r ,  8 )  = ( I ,  0). He showed that the asymptotic 
distribution f d (  8) of winding number was a Cauchy function, i.e. 

( 2 )  

Other properties of the winding number diffusion problem have been explored by 
Pitman and Yor (1984), Lyons and McKean (1984) and Berger and Roberts (1988). 

Recently, Berger and Roberts (1988) have re-examined the actual random walk 
problem. They found that the standard eigenfunction method (Roberts and Ursell 
1960) for finding random walk distributions fails for winding numbers, because the 
evolution of winding number is not a commutative process. Also, they conducted a 
numerical simulation involving 2 x lo4 particles taking lo5 random steps. Significant 
discrepancies appeared between f (  8, N )  for the simulation and fd( 8, N )  given by the 
diffusion distribution. Also, the root mean square winding number Orms is infinite for 
the diffusion distribution (Levy 1940), whereas Orms for the simulation grew roughly 
as log N. 

Rudnick and Hu (1987) have independently explored a different approach to the 
winding number problem. Particles which get very close to the origin can move rapidly 
in 8, which is why the diffusion process yields infinite Orms  (and  infinite higher moments 
in 8 ) .  Put another way, the operator V’ = r - ’8 , ( rdr )  + r-?d;  has only a coordinate 
singularity at the origin. However, for 8 E (-00, CO), C2 = r-’d,( ra,)  + r-’a; has a more 
serious singularity which leads to infinite moments forfd(8).  To remove this difficulty, 
Rudnick and  Hu instead considered diffusion with a boundary placed at a radius R, 
preventing access to the singularity at the origin (Belisle (1986) has independently 
considered this problem). They showed that BrmS grew logarithmically. Furthermore, 
a numerical random walk on a square lattice yielded results similar to those for bounded 
diffusion. Given a reflecting wall at R (see equation ( 1 1 )  below), the asymptotic 
distribution was found to be a sech function (Hu 1986), i.e.f(O) - l / cosh(e /A) ,  where 
A -log r. 

In the present paper, we explore the relationship between the finite step-size winding 
number problem and the boKnded diffuion process. First, the mean square winding 
numbers (second moments) 0 2 ( N )  and & r )  are calculated in 8 2 .  Just as comparison 
of second moments for the radial distributions determines the scaling T =  N, we can 
compare second moments of winding number to find the most natural radius R for 
the reflecting boundary. This radius turns out to have the rather interesting value 
R = e 3  Section 3 gives equations for the evolution of higher polynomial moments 
of 8, 8”(N) ,  where only the radial random walk distribution need be known. These 
equations are solved in terms of radial Green functions. The correspondence of the 
random walk with the bounded diffusion process is then established. For the special 
radius R = e - 2 1  all moments for the two processes converge, in the sense that the 
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fractional error decreases with N as log-2 N :  
- 
e 2 k ( N )  -c(7 = N )  - -(log N)-2. 

e r k (  N )  

For other values of R, the convergence is slower, with the fractional error decreasing 
as 4(log-’ N )  log(e2R). The results of Berger and Roberts’ (1988) numerical simulation 
are shown to be consistent with the finite step winding number distribution converging 
to the sech function. 

2. The mean square winding number 

2.1. Random walk 

We will choose units such that the step size 1 = 1. Let p(r, 8, N )  be the probability 
distribution at step N, where 0 < r < CO, --OO < 8 < CO. Integrating over 8 gives h (  r, N )  = 

p(r, 8, N )  de, and integrating over r gives f( 8, N )  = SOr p(r, 6, N )  de. The radial 
distribution function h (  r, N )  is described by the classical two-dimensional random 
walk problem, and quickly converges to the corresponding diffusion distribution 
(equation (1)). (The precise distribution in the plane centres on the initial point 
( r ,  0 )  = (1,O) rather than the origin, implying that a term of order N-’ should be added 
to h(r, N ) .  We will ignore terms to this order when considering the large-N behaviour 
off(@, N ) . )  Averages over the entire distribution will be denoted by an overbar, and 
averages restricted to radius r by brackets, e.g. 

In figure 1, the three independent variables (r, 0, 4)  describe the position (r, e )  of 
a point P N + ,  reached at step N + 1 and the direction 4 backwards to the point PN at 
step N. The step between PN and PNil  can also be described by the independent 

Figure 1. The geometry of the Nth step between P, and P.,,,. The angle at step N +  1 
is O = 8’+ SO. 
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variables (r’, e’, $), which give the position of PN and the forward orientation of the 
step. Let S O =  8-8’. Then 

r ’ = ( 1 + r 2 + 2 r c o s  4)’” (4a) 
r+cos C#J se = -sign(4) cot-’ 

= +sign( ic , )  cot-’ 

sin 141 
r’+ cos ic, 

sin141 ’ 

(Here -ir < 4, ic, s r, and 0 s cot-’ x s 7.)  These transformations relate p (  r, 8, N + 1) 
to p(r’, e’, N ) .  To obtain p(r, 8, N + l ) ,  we integrate p(r’ ,  e’, N )  over all possible 
previous positions at step N. A particle reaching (r, e) at step N +  1 must have come 
from a point lying on a unit circle centred at (r, e ) ;  this circle is parametrised by 
and described by equations ( 4 a )  and (4b) .  Thus 

p (  r, 8, N + 1) = i li p (r’, e’, N )  d 4 .  (5) 2ir -rr 

The mean square winding number defined in equation ( 3 b )  can be determined 
knowing only the radial distribution. From equation (5) and 0 = e’+ 80 the mean 
square winding number at step N +  1 is 

e 2 ( N +  1 )  = JOKlx B ‘ p ( r , O , N + l ) d O r d r  

2ir - T  

- 

-x 

=LloXj-:Jr [ e ’2+2e’ se+(se )2 ]p ( r ’ ,  e J , N ) d 4 d e r d r .  

We must transform the integral to the coordinate set (r‘, e’, i c , ) ;  the Jacobian is just 
r’/r, so that 

The cross term 28‘88 drops out because p(r’ ,  e‘, N )  is even in 8‘ (also because 68 is 
even in $). Consequently 

e 2 ( N + 1 ) - i ? ( N ) =  (6t9‘)(r’)h(rf, N ) r ’ d r ’  (7) 
- 

where 

The integration of equation (7) is performed in appendix 1. The result is, to first 
order in N - ’ ,  

where a = (4- y ) / 2  = 1.712 ( y  = Euler’s constant = 0.5772.. .). Summing over N’ from 
N ‘ =  1 to N’= N yields 
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The neglected order terms determine the constant b; these terms arise in the exact 
expression for h(r, N ) , h  the integration of (7 ) ,  and in the sum (rather than integration) 
over N. The values of 02( N) and ermS obtained in the numerical simulation of Berger 
and Roberts (1988) are consistent with these theoretical predictions, to within statistical 
error. The $ for the simulation started off slightly low compared to the first terms of 
equation (10) (6% low at N =  10); and reached within l u =  1.4% (see below) near 
N = 1000. The value of b suggested by the data is small in magnitude: b = -0.4 f 0.2. 

(For M particles in a simulation the mean square statistical error is 

1 
M 

- 
u2( e’) = - ( e2 -79)’ 

1 -  - 
= - ( e4 - ( e2)2). 

M 

For the sech distribution 84=5(?)’ (this was true to within a few per cent for the 
simulation); thus a’(?) = 4/ M ( q ) 2 .  In the numerical simulation M = 2 x lo4, yielding 
a la error of 1.4% .) 

2.2. Difusion 

We wish to relate the finite step-size random walk to a diffusion process where the 
area around the origin has been blocked off out to a radius R. The distribution pd( r, 8, r )  
for the diffusion process satisfies 

and has boundary condition arlr=Rpd( r, e, T )  = 0. Let the initial position at r = 0 be 
(r, e )  = (R, 0). Equation ( 1  1 )  can be integrated to find the evolution of the mean square 
winding number e:( r )  and higher moments. Let hd( r, r )  =I?% pd( r, 8, T )  dB be the 
radial distribution analogous to h(r, N). Multiply equation ( 1 1 )  by O 2  and integrate 
over r and 0 :  

a -  i ] , c lm 6 2  [ i  - - a ,.-+- a 1 - a’] - e:( r )  = - pd(r, 8, r )  dB r dr. 
a7  4 r ar  ar r 2 a e  

The radial operator integrates to zero and the 6 term can be integrated twice by parts, 
leaving 

-8:(7)=j:($)hd(r,~)rdr. a -  
a7 

For small R2/7 the radial distribution hd( r, r )  is given by equation ( 1 )  with N replaced 
by r. The right-hand side of equation (12) yields the first exponential integral of R2 / r  
(see equation (Al.3)-(A1.5)) 

(plus terms second order in R2/ r ) .  Comparing equations (9) and (13) shows that the 
second moments of the finite step and diffusion problems will coincide (down to first 
order in log N) for R = e-2 .  For different values of R, e 2 ( N )  - e:(T = N) = 
log(e*R) log N. 
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3. Correspondence with the diffusion problem 

3.1. Random walk 

Equations analogous to ( 7 )  can be found for higher-order moments of the winding 
number distribution: 

- 
e2k(N+i)-e2k(N)=(e+se)2k(N)-eZk(N) 

- 
Unfortunately, except for e’( N ) ,  these expressions cannot be evaluated without a 
knowledge of how lower moments (the functions ( 6 2 ‘ k - m ) ) ( r ’ ) )  vary with r’ .  To find 
these functions, we first expand equation ( 5 )  as a Taylor series in se( r, 4)  and fir( r, 4 ) .  
Averages over angle 4 will be denoted by brackets as in (8). All odd powers of 60 
vanish upon averaging: 

r 1 

It is straightforward to show that for large r this expansion yields the diffusion equation 
( 1  1) with N = T. The correspondence with this equation breaks down near the origin, 
however. Our task will be to resolve this difficulty. 

First consider ( e 2 ) ( r ,  N ) .  Rewrite ( 1 5 )  as 

p ( r , O ,  N + l ) - p ( r , 8 ,  N)=[9?o+(%2+f (682) )a~  . . . ] p (  r , O , N )  (16) 

where 

We multiply equation ( 1 6 )  by 8‘ and integrate over 0, integrating by parts to remove 
the as derivatives. The result is, by equation (3a ) ,  

( 1 8 )  

Equation (18) has a simple physical interpretation as a radial diffusion with a 
source term. The radial operator Bo is simply the evolution operator for an ordinary 
axisymmetric random walk in the plane. In  other words (neglecting the initial step to 
( r ,  e)  = ( 1 , O ) )  the radial distribution for the finite-step random walk h ( r ,  N )  evolves 
according to h( r, N + 1 )  - h( r, N )  = 9?oh( r, N ) .  As particles move about the plane, 
they carry with them the winding number already obtained in previous travels. The 
function ( e 2 ) (  r, N )  increases because of the source term ((se2) + 2 g 2 ) h  ( r ,  N ) ,  but also 
diffuses because of the random walk operator %,,. The operator 9?2 corrects for an  
effect which becomes important only for particles that reach r = N. All such particles 
must travel almost entirely in a radial direction. Consequently the mean 602 they see 
at previous steps must be smaller than (se’), i.e. (80’) alone does not give the correct 

( e 2 ) ( r ,  N + 1 ) - ( e 2 ) ( r ,  N ) = % ! , [ ( e ’ ) ( r ,  ~ ) ] + ( ( ~ ’ ) + 2 % ~ ) h ( r ,  N ) .  
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source term for these particles. However, the term involving 3’ is proportional to 
a,h(r, N ) ,  of order N - 2 ,  and will be neglected in our calculations. 

The solution to (18) is 

where G (  r, N, r, , N , )  is the Green function for 372,. Recall that the standard finite 
step random walk in radius quickly converges to the corresponding diffusion problem. 
Just as we have approximated h(r, N )  by the diffusion distribution of equation ( l ) ,  
we will approximate G (  r, N, r , ,  NI) by 

r2 + r: - 2rr, cos p 
G(r, N, I,,  NI)  =- 

2 r2+ r2 
N -  NI 

(An evaluation point on the circle at (r, N )  is affected by sources distributed over the 
entire circle at ( r , ,  NI). Thus we must integrate over the relative (ordinary) angle p 
between source point and evaluation point.) Equation (19) may be checked against 
equation ( 7 )  by integrating over r. Since 

] O r G ( r , N , r l , N l ) r d r = l  

one obtains the expected result 

i J o  

Higher-order moments can be found in a similar manner. The fourth moment is, 
with G12= G ( r l ,  NI ,  r2, N 2 ) ,  etc, 

N , - l  a3 cc - 
e‘( N )  = 6 2 Glzh2(602)I(S02)2r2 dr2 rl dr,  + h1(SO4),rl d r , .  (22) 2 { 1 1  0 0  

This may be compared with equation - (14) for k = 2 .  As shown in appendix 2, the 
(SO4), integral grows as log N whereas 04( N )  as a whole grows as log4 N. In general, 
for all higher moments the leading term in equation (14) (involving ( S O ’ ) )  dominates 
the (SO4) term by a factor of log3 N, and dominates all other terms by higher powers 
of log N. 

3.2. Difuusion 

The general moment equation analogous to equation (12) is 

To simplify the analysis of the bounded diffusion process, we approximate the radial 
distribution function and the Green functions by ignoring the boundary; thus we 
employ equation (1) for the radial function and equation (20) for the Green function. 
The error is second order in T-’ (an extension of the arguments given in appendix 2 
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shows that the resulting fractional error in e( T )  is of order log-2 7) .  Thus, in analogy 
with equations (21) and (22) we write 

-6 

-0 

- 
f3:(7) = 6 I,’ Iom lom G12hd2SlS2r2 dr, r, dr, d~~ dTl 

.. 

.. 

where (se’)( r)  has been replaced by the source function 

if r < e-’ 
S( r )  = 

The functions (se2)( r), S (  r), and their difference E (  r) 
figure 2. 

( S O ’ ) (  r) - S (  r) are plotted in 

3.3. Comparison of random walk and difision moments 

The discrepancy in fourth moments between the random walk and bounded diffusion 
is (after approximating the sums in equation (22) by integrals) 

e 4 ( N ) - 8 4 , ( N ) = 6  G 1 2 h 2 ( ~ I S 2 + ~ 2 S I + ~ l ~ 2 ) r 2 d r 2  r, dr ,  dN2dN,+O(log2 N ) .  

(27) 
I - 

Appendix 2 shows that this entire expression is of order log2 N (compared to log4 N 
for the entire fourth moment); in general for all moments t k d i s c r e w c y  is small by 
two powers of log N. In other words, the fractional error ( N )  - O i k (  N ) ) / e 2 k (  N )  
decreases as (log NI-,. One could also say that the quantities (p)1’2k and (z)”2k 
converge. 

The data from Berger and Roberts’ (1988) random walk simulation are consistent 
with these results. For the sech function,84 = 5 ( 8 ’ ) , ,  and O6 = 61(82)3. The lo statistical 

- 
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error for O4 was about 5 % ;  deviations between the numerical values of O4 and the 
sech predictions became comparable to this percentage near N = 50, and were always 
below 10%. Deviations for the sixth moment were also never clearly greater than 
statistical error ( l a  = 19"/0). 

Figure 3 shows how the numerical random walk distribution compares with the 
bounded diffusion distribution. The diffusion distribution is asymptotically (Hu 1986) 

- - 

- 1  1 
f ( 0 , ~ )  =- ( cosh8) . 

2 e r m s  2erms 
We let 

e,,, = ( a  log' N + a log N)'!'  (29) 
as in equation (10). Even for N as small as 10 the distributions are close, except at 
small 0. The Cauchy distribution (equation (2))  is also shown. Figure 4 displays the 
cumulative distribution 

p ( e ,  N )  = 2 f ( e ' ,  N )  de'. (30) i,: 
The function P (  8, N )  gives the probability that the magnitude of the winding number 
is at least 101. For the Cauchy function 

2 2 e  
P (  e, N )  = 1 --tan-' - 

7r log N 
and for the sech function 

2 r e  
P ( 0 ,  N)=l--tan-'sinh-. 

7r 2f'rms 

Here the similarities between the simulation and the sech prediction become quite 
striking. 

0.3 0.151 

0 . 2  

0 . 1  

0 1 2 3 4 0 1 2 3 4 
I 

0 1 2 3 4 
9 i n  

Figure 3. The numerical winding number distribution of 20000 particles (Berger and 
Roberts 1987) compared with the bounded diffusion prediction (equations (28) and (29)). 
The numerical results are given as individual points representing bins of size A 6  = ~ / 5 .  
The dotted curve shows the Cauchy distribution of equation (2) .  with T = N. ( a )  N = 10; 
( b )  N = 1000. 
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‘ a )  

e in  

Figure 4. The cumulative probability functions P ( 0 ,  N )  (equation (30)) for the simulation 
are compared to P ( 0 ,  N )  for the bounded diffusion problem (full curve), and for the 
Cauchy distribution (dotted curve). ( a )  N = 10; ( b )  N = 1000. 

Appendix 1. Calculation of s’( N + 1) - s’( N) 
We wish to evaluate equation ( 7 )  to leading order in N-’.  First choose some radius 
ro such that 1 < ro < N I / ’ ,  and separate the radial integration into two parts, 0 S r’ < ro ,  
and r’> ro.  In the exterior region we can expand ( S e 2 ) ( r ’ )  as a Taylor series in powers 
of r’-’ .  From equation (8) and some calculation, 

( A l . l )  

Now employ equation ( 1 )  for h ( r ’ ,  N ) ,  and transform to the variable t = r ” / r i :  

(SO2)( r ’ ) h (  r’, N ) r ’  dr’ = (A1.2) 
N 

The exponential integral (e.g. Gradshteyn and Ryzhik 1980) is defined by 

and satisfies 

Thus 

1 
n - 1  E, ( z )  = - [e-’ - zE n -  I ( z ) l  

y + l o g z +  1 - 
k = l  k k !  

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

1 1 

~ r ~ ( S 0 2 ) ( r f ) h ( r f ,  

-log r 0 + 7 + O ( r i 4 )  + O ( N - 2 ) .  (A1.7) 
N 2 8 r0 
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In the interior region we expand h(  r ’ ,  N )  = 2 N-’ + O( N-*) rather than (se’)( r ’ ) :  

(A1.8) 

(averaging over angle 4 need only be over [0, r], as 68 is even in 4) .  We will transform 
the integration variables from ( r ’ ,  4 )  to (4, S e ) .  Let 

= (cot se -cot $)se2( i + Cot2 se) 
= cot-’( ro + cos $)/sin &. 

Then 

(A1.9) 

(A1.10) 

We wish to extract that part of the integral which is independent of $o (all other terms 
must cancel with terms in the external integration, leaving an answer independent of 
ro).  Thus, let 

dSe = Io* ( C L  - cot se) d s e  - ( p  - cot Se)  d s e  + cot se d s e  ( A l . l l )  

(the function p -cot 88 is well behaved at 68 = O ) .  The first term of ( A l . l l ) ,  when 
introduced into (Al.lO), integrates to 2N-I. The second and third terms can be 
evaluated to give (log ro-  r i 2 / 8 + .  . . ) N - ’ .  Thus equations (A1.7) and (A1.lO) combine 
to give 

I:” i:: 

(Al .  12) 
- l o g N - y  2 e’( N +  1) -s’( N )  = +-+ O( N-’). 

2N N 

Appendix 2. Errors in the moment approximations 

First we show that the (SO4) term in (22) is only first order in log N. To see this, divide 
the radial integral into two ranges, say 0 s  r ,  zz 3, and 3 zz r ,  =G CO. In the first range 
h l = 2 / N ,  and in the second range ( ~ S 8 ~ ) ~ = 3 / 8 r : .  The second range integrates to 
hN;’+O(N;’). If we let a =ji(8e4) ,rI  dr ,  then 

N - l  1 Iox h1(6e4) ,r ,  dr ,  = (2a  +$) - 
1 NI 

= (2a  +A) log N. (A2.1) 

We now show that the first term in (22) can be evaluated to a good approximation 
using S ( r )  as the source function rather than ( 8 e 2 ) ( r ) .  The deviation is given by 
equation (27).  First consider the SI&’ part. The Bessel function 

found in GI* will be expanded in a Taylor series, using 

(A2.2) 
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Replace the integration variables N, , N 2 ,  rl , r2 by N2, fi = N, - N2, x, = r:, and 
x2 = r:. The S ,  integral becomes 

The in = 0 term simplifies as follows: the integration over x i  yields the first exponential 
integral 

N 
t l o g f i + ( 4 - y )  (A2.3) 

(for R = e-'). Meanwhile, recall that R = e-' was chosen so that equations (9) and 
(13) would have identical right-hand sides to first order in N-' (for N = 7) .  This 
implies, from the definition of E(r) below equation (26), that 

lom &(r )  e - r 2 ' N r d r = O ( N - ' ) .  (A2.4) 

Thus the x2 integral gives 

for some constant c. The m = 0 term is then approximately 

= i c  log' N + O(1og N ) .  (A2.5) 
The sum of the higher rn terms can be estimated with similar methods; the result is 
first order in log N. The S 2 ~ l  part of equation (27) also yields a log' N growth, while 
the part is zeroth order in log N. Since the total fourth moment goes as log4 N, 
this proves that the fractional error between the random walk and diffusion moments 
is of order log-' N. A similar but more detailed calculation leads to an identical result 
for all higher moments. 
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